神秘の計算
 何か数字を思い浮かべて下さい。

例えば 「1」 にしてみましょう。

 次にもう一つ数字を思い浮かべて下さい。

例えば 「2」 にしてみましょう。

 それらの数字を足して下さい。

1 たす 2 ですから 3 になります。

 これらの結果を並べてみましょう!

1、2、3 になります。
 
 さて、今度は、足した結果の数字 「3」 に、並んだその一つ前の数字 「2」 を足してください。結果は 「5」 になりますので、上の数字の列の最後に追加して下さい。

1、2、3、5 になります。 
まったく同様に繰り返しますと、1、2、3、5、8、13、21、34、55、89、144、233、377…………というふうになります。

このように並んだ数字のことを「フィボナッチ数列」と呼びます
 次は割り算です。数値を一つ前の数値で割ります。

上の数列の場合、2÷1、3÷2、5÷3、8÷5、13÷8、21÷13、34÷21、55÷34、89÷55、144÷233、377÷233…………というふうな式なります。

 それぞれ実際に計算してみて下さい。

2、1.5、1.6666、1.6、1.625、1.6154、1.6190、1.6176、1.6181、1.61797、1.618…………となります。 
 これ以降の数列に対しても計算してみて下さい。ある一定の数値に収束してくることが分かるはずです。

 その数値1.618は見覚えがありませんか?

美術の世界で有名な「黄金比」または「黄金分割比」なのです。

 最も美しいと言われる黄金の比率1:1.618はこのような数列によっても出現します。計算すれば、ただひとつの絶対的な数値に向かって行くという事実。そして、その数値が美の本質を示す数値であるという事実に驚いて欲しいと思います。
 「美しい」という言葉は今の日本社会ではあまり聞かれません。むしろ自然観察などでよく耳にします。自然の景色や花などに接すると頻繁に「美しい」という感想が聞かれますが、ファッションなどでは「個性的」「斬新」などの感想が多くなります。

 世の中には「好み」「個性」などといった相対的な評価が蔓延していますが、「美しい」という絶対的な評価が厳然と存在していることを忘れないで欲しいと思います。

 当社は、この「美しい」という絶対的な評価を商品選択の基礎に置いています。
当店ホームページもご覧下さい。

キエフバレエ団が来店されました。
彼女達のサインです。

けいとう
〒604-8035
京都市中京区新京極通三条下る桜之町406-3
電話番号 075-231-0470
keito@shinkyogoku.or.jp
http://www.keito.co.jp/